Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the "critical power".

نویسندگان

  • Weerapong Chidnok
  • Jonathan Fulford
  • Stephen J Bailey
  • Fred J Dimenna
  • Philip F Skiba
  • Anni Vanhatalo
  • Andrew M Jones
چکیده

We tested the hypothesis that muscle high-energy phosphate compounds and metabolites related to the fatigue process would be recovered after exhaustion during recovery exercise performed below but not above critical power (CP) and that these changes would influence the capacity to continue exercise. Eight male subjects completed single-leg, knee-extension exercise to exhaustion (for ∼180 s) on three occasions, followed by a work-rate reduction to severe-intensity exercise, heavy-intensity exercise (CP conditions (at least 10 min and 39 ± 31 s, respectively; P < 0.05). During passive recovery and CP recovery exercise, neither muscle [PCr] nor pH recovered, reaching ∼37% of the initial baseline and 6.6 ± 0.2, respectively. These results indicate that the muscle metabolic dynamics in recovery from exhaustive >CP differ according to whether the recovery exercise is performed below or above the CP. These findings confirm the importance of the CP as an intramuscular metabolic threshold that dictates the accumulation of fatigue-related metabolites and the capacity to tolerate high-intensity exercise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains

Lactate or gas exchange threshold (GET) and critical power (CP) are closely associated with human exercise performance. We tested the hypothesis that the limit of tolerance (Tlim) during cycle exercise performed within the exercise intensity domains demarcated by GET and CP is linked to discrete muscle metabolic and neuromuscular responses. Eleven men performed a ramp incremental exercise test,...

متن کامل

Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept.

We investigated the responses of intramuscular phosphate-linked metabolites and pH (as assessed by (31)P-MRS) during intermittent high-intensity exercise protocols performed with different recovery-interval durations. Following estimation of the parameters of the power-duration relationship, i.e., the critical power (CP) and curvature constant (W'), for severe-intensity constant-power exercise,...

متن کامل

Muscle metabolic responses to exercise above and below the "critical power" assessed using 31P-MRS.

We tested the hypothesis that the asymptote of the hyperbolic relationship between work rate and time to exhaustion during muscular exercise, the "critical power" (CP), represents the highest constant work rate that can be sustained without a progressive loss of homeostasis [as assessed using (31)P magnetic resonance spectroscopy (MRS) measurements of muscle metabolites]. Six healthy male subje...

متن کامل

Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship.

The physiological equivalents of the curvature constant (W') of the high-intensity power-duration (P-t(LIM)) relationship are poorly understood, although they are presumed to reach maxima/minima at exhaustion. In an attempt to improve our understanding of the determinants of W', we therefore aimed to determine its recovery kinetics following exhaustive exercise (which depletes W') concomitantly...

متن کامل

Muscle damage alters the metabolic response to dynamic exercise in humans: a 31P-MRS study.

We used ³¹P-magnetic resonance spectroscopy to test the hypothesis that exercise-induced muscle damage (EIMD) alters the muscle metabolic response to dynamic exercise, and that this contributes to the observed reduction in exercise tolerance following EIMD in humans. Ten healthy, physically active men performed incremental knee extensor exercise inside the bore of a whole body 1.5-T superconduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 115 2  شماره 

صفحات  -

تاریخ انتشار 2013